On Weak Concircular Symmetries of Kenmotsu Manifolds

نویسنده

  • Shyamal Kumar Hui
چکیده

The object of the present paper is to study weakly concircular symmetric and weakly concircular Ricci symmetric Kenmotsu manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Concircularly Φ−recurrent Para-sasakian Manifolds

A transformation of an n-dimensional Riemannian manifold M , which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation. A concircular transformation is always a conformal transformation. Here geodesic circle means a curve in M whose first curvature is constant and second curvature is identically zero. Thus, the geometry of concircular transformat...

متن کامل

Harmonic Maps on Kenmotsu Manifolds

We study in this paper harmonic maps and harmonic morphisms on Kenmotsu manifolds. We also give some results on the spectral theory of a harmonic map for which the target manifold is a Kenmotsu manifold.

متن کامل

On Φ-ricci Symmetric Kenmotsu Manifolds

The present paper deals with the study of φ-Ricci symmetric Kenmotsu manifolds. An example of a three-dimensional φ-Ricci symmetric Kenmotsu manifold is constructed for illustration. AMS Mathematics Subject Classification (2000): 53C25

متن کامل

ACTA UNIVERSITATIS APULENSIS No 19/2009 ON WEAKLY SYMMETRIC AND SPECIAL WEAKLY RICCI SYMMETRIC LORENTZIAN β-KENMOTSU MANIFOLDS

In this paper we study weakly symmetric and special weakly Ricci symmetric Lorentzian β-Kenmotsu manifolds and obtained some interesting results. 2000 Mathematics Subject Classification: 53C10, 53C15.

متن کامل

SOME PROPERTIES OF m−PROJECTIVE CURVATURE TENSOR IN KENMOTSU MANIFOLDS (COMMUNICATED BY PROFESSOR U. C. DE)

In this paper, some properties of m−projective curvature tensor in Kenmotsu manifolds are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011